
Semantic Theory
Lecture 12: Events and Processes;

Semantic Roles

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Final Exam

Thursday, July 24

10:00 -

Seminar Room

2

Event Semantics

■  A model structure with events and temporal precedence is
defined as M = ⟨U, E , <, eu, V⟩, where
■  U ∩ E = ∅,
■  < ⊆ E×E is a partial ordering relation (temporal precedence)
■  eu ∈ E is the utterance event
■  V is an interpretation function like in standard FOL, with

De = U ∪ E.

3

4

Model structures for plural terms

■  A model structure is a pair M = ⟨⟨U, ≤⟩, V⟩, where
■  ⟨U, ≤⟩ is an atomic join semi-lattice with universe U and

individual part relation ≤.
■  V is a value assignment function.

■  A ⊆ U is the set of atoms in ⟨U, ≤⟩.

■  U \ A is the set of non-atomic elements, i.e., the proper
sums or groups in U.

Model Structure for Mass Terms

■  We add another sort of entities, the “portions of matter”
M, to the model structure, and distinguish an individual
part and a material part relation, writing ≤i for the former,
and ≤m for the latter:

■  M = ⟨⟨U, ≤i⟩, ⟨M, ≤m⟩, h, V⟩
■  U ∩ M = ∅
■  ⟨U, ≤i⟩ is an atomic join semi-lattice
■  ⟨M, ≤m⟩ is a non-atomic (and dense) join semi-lattice
■  V is a value assignment function

5

Vendler‘s Aspectual Verb Classes

6

States
know, believe,

own, love,
resemble

Eventualities

Activities
run, walk,

swim, work,
sleep, rain

Events

Accomplishments
paint a picture,

write a paper, build
a house

Achievements
recognize, spot,
find, lose, reach,

die

Model Structure with Sub-Events

■  In analogy to plural semantics, we can represent sub-event
relations by a join semi-lattice.

■  M = ⟨U, ⟨E, ≤e⟩ , <, eu, V⟩, where
■  U ∩ E = ∅,
■  < ⊆ E×E is a partial ordering relation (temporal precedence)
■  eu ∈ E is the utterance event
■  ⟨E, ≤e⟩ is a join semi-lattice
■  V is an interpretation function

7

Model Structure with Sub-Events

■  M = ⟨U, ⟨E, ≤e⟩ , <, eu, V⟩, where
■  U ∩ E = ∅,
■  < ⊆ E×E is a partial ordering relation (temporal precedence)
■  eu ∈ E is the utterance event
■  ⟨E, ≤e⟩ is a join semi-lattice
■  V is an interpretation function

■  The model structure must observe some additional
constraints on < and ≤e, e.g.:
■  If e1 < e2 and e1’ ≤e e1 and e2’ ≤e e2, then e1’ < e2’
■  If e1’ ∘ e2’ and e1’ ≤e e1 and e2’ ≤e e2, then e1 ∘ e2

8

Model Structure with Sub-Events

■  Application: Complex events are represented as
sequences of temporally ordered sub-events
■  for instance “scripts” like: visit a restaurant or shopping in the

supermarket

9

Processes and Mass Terms

■  Process-describing verbs are similar to mass terms. Both
are
■  Cumulative:

 gold(x), gold(y) ⊨ gold(x⊕m y)
 rain(e1), rain(e2) ⊨ rain(e1 ⊕e e2)

■  Divisive:
gold(x), y ⊲m x, ⊨ gold(y)
rain(e1), e2 ⊲e e1, ⊨ rain(e2)

10

Processes and Mass Terms

■  In analogy to the semantics of mass terms, assume
■  a domain of processes (“event matter”) in addition to the

domain of individual events, represented through a non-
atomic join semi-lattice

■  a “materialisation function” for events that maps individual
events to processes
 M = ⟨⟨U, ≤i⟩, ⟨M, ≤m⟩, h, ⟨Ei, ≤ei⟩ , ⟨Em, ≤em⟩, he, <, eu, V⟩

■  Add two-place relations ⊲ei, ⊲em, and operators ⊕ei, ⊕em,
and a function expression me to the representation
language, and give them a straightforward semantic
interpretation in terms of ≤ei, ≤em, ⊔ei , ⊔em, he.

11

Progressive Form

(1) John is eating an apple

■  The core of the interpretation of progressive form is the
materialization function he, which maps individual events –
the telic action of John’s eating an apple – to the process
or activity that leads to the result.

12

(Very Preliminary) Interpretation of the
Progressive Form

(1) John is eating an apple

■  Progressive operator:
■  PROG := λEλe’∃e[E(e) ∧ e’=me(e)]
■  λEλe’∃e[E(e) ∧ e’=me(e)](λe’’∃x[apple(x) ∧ eat(e’’,j*,x)])
■  ⇔β λe’∃e[∃x[apple(x) ∧ eat(e,j*,x)] ∧ e’=me(e)]

■  Present progressive:
■  PRES := λE ∃e’’[E(e’’) ∧ e’’∘eu]
■  λE ∃e’’[E(e’’) ∧ e’’∘eu]

 (λe’∃e[∃x[apple(x) ∧ eat(e,j*,x)] ∧ e’=me(e)])
■  ⇔β ∃e’’[∃e∃x[apple(x) ∧ eat(e,j*,x)] ∧ e’’=me(e) ∧ e’’∘eu]

13

Semantic Roles: An Example

(1) The window broke

(2) A rock broke the window

(3) John broke the window with a rock

(1) [John]ag broke [the window]pat [with a rock]inst

(2) [A rock]inst broke [the window]pat

(3) [The window]pat broke

14

A Variant of Davidson‘s Problem?

■  How do we model entailment?

 break3(j, w, r) ⊨ break2(r, w) ⊨ break1(w)

■  This reminds of Davidson‘s problem:

 kill4(g, b, m, p) ⇒kill3(g, b, p) ⇒ kill2(g, b)

■  A solution along the lines of Davidson’s event semantics:
■  Introduce an event argument

■  Represent roles as binary relations between events and
participants

15

„Neo-Devidsonian“ Event Semantics

■  Assume an implicit event argument for event verbs (we
need it anyway).

■  Represent roles as binary relations between events and
participants:

(1)  ∃e [break(e) ∧ pat(e, w)]

(2)  ∃e [break(e) ∧ pat(e, w) ∧ inst (e, r)]

(3)  ∃e [break(e) ∧ ag(e, j) ∧ pat(e, w) ∧ inst (e, r)]

16

Differences

■  Event modifiers are
■  syntactically realize by free adjuncts
■  freely applicable to all event verbs, and
■  can be iteratively applied to event predicates in arbitrary

number

■  Semantic roles are
■  syntactically realized by complements,
■  which can occur with a verb only in accordance with verb-

specific subcategorization constraints

17

Differences

■  Adjuncts expressing event modifiers are semantically
transparent (modulo ambiguity): the adjunct at midnight
expresses a temporal modifier, in the park a location.

■  Syntactic complements realize different semantic roles,
and one role can be realized by different complement
types. The relation between roles and their syntactic
realizations (“role-linking relation”) is verb-specific.

■  Adjuncts express “external” properties of events.

■  Semantic roles refer to intrinsic parts of the event
structure.

18

What are Semantic Roles?

■  Understanding a verb (or any other predicate) means
to know the situation type or conceptual schema
(the “frame”) associated with or evoked by it.

■  Part of the situation type or conceptual schema are
typical participants: persons or objects that play a
specific role in the conceptual schema expressed by
the predicate.

19

How many Roles?

■  According to Fillmore (1968), roles are universal: they
form a small, closed inventory.
■  A typical role inventory: Agent, Theme (Patient,

Object),Recipient, Instrument, Source, Goal, Beneficiary,
Experiencer.

■  [Mary]Ag gave [a book]Pat [to John]Rec

■  [John]Rec received [a book]Pat [from Mary]Ag

■  But: [Mary]??? sold [a car]??? [to John]??? [for 3,000 €]???

20

How many Roles?

■  Specific role inventories for each lemma:

 roles of kick: arg0kick , arg1kick or „kicker“, „kicked“

■  This is the PropBank solution.

■  Problem: Cross-lexical relations (and entailments) cannot
be modelled:

 give : receive

 buy : sell

 like : please

21

How many Roles?

■  Specific role inventories for different frames: Event or
situation schemata that are „evoked“ by content words,
typically verbs (also called frame-evoking elements or
target words).

■  Semantic roles are neither universal nor lemma-specific:
There are typically several target words for a frame. Roles
apply across the target words of a frame.

■  This is the FrameNet variant of role semantics.

■  Example: The “Commercial Transaction” frame is evoked
by sell, buy, vend, auction, purchase, sale, ... and has
frame-specific roles (“frame elements”) Seller, Buyer,
Goods, Money.

22

23

Roles in Compositional Semantics

■  How do we get from a surface sentence to its role-
semantic representation?

■  Two sub-tasks:
■  Role Linking: How can syntactic relations between verb

and arguments be mapped to semantic roles?
■  Semantic Construction: How can we integrate role

information in type theory?

24

Role Linking
■  Part of the linking process is regular. For instance:

■  An overt agent always becomes subject.
■  If there is no overt agent, the instrument becomes subject.
■  If no agent or instrument occurs, the theme becomes subject.

■  Linguistic grammar theories try to describe role linking
systematically, as part of the grammar, working, e.g., with
“obliqueness hierarchies”.

■  Problem: Role linking has idiosyncratic aspects.

■  As a consequence: Linking information should be (to some part)
provided by the lexicon.

■  (Statistical role labelers typically exploit grammatical as well as
lexical regularities.)

25

Semantic Composition (just for illustration!)

■  Order-free lambda abstraction

■  kick ⇒ λ{x, y, e}.kick’[ref:e, ag:x, pat:y]

■  kick Bill ⇒ λ{x, y, e}.kick’[ref:e, ag:x, pat:y](bill’pat)

 ⇔ λ{x, e}.kick’[ref:e, ag:x, pat:bill’]

■  Mary kicked Bill ⇒ λ{x, e}.kick’[ref:e, ag:x, pat:bill’](mary’ag)

 ⇔ λ{e}.kick’[ref:e, ag:mary’, pat:bill’]

