Semantic Theory Lecture 12: Events and Processes; Semantic Roles

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Final Exam

Thursday, July 24 10:00 -

Seminar Room

Event Semantics

- A model structure with events and temporal precedence is defined as M = (U, E, <, e_u, V), where
 - $U \cap E = \emptyset$,
 - $< \subseteq E \times E$ is a partial ordering relation (temporal precedence)
 - $e_u \in E$ is the utterance event
 - V is an interpretation function like in standard FOL, with $D_e = U \cup E$.

Model structures for plural terms

- A model structure is a pair $M = \langle \langle U, \leq \rangle, V \rangle$, where
 - (U, \leq) is an atomic join semi-lattice with universe U and individual part relation \leq .
 - V is a value assignment function.
- $A \subseteq U$ is the set of atoms in (U, \leq) .
- U \ A is the set of non-atomic elements, i.e., the proper sums or groups in U.

Model Structure for Mass Terms

- We add another sort of entities, the "portions of matter" M, to the model structure, and distinguish an individual part and a material part relation, writing ≤_i for the former, and ≤_m for the latter:
- $\blacksquare M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, h, V \rangle$
 - $U \cap M = \emptyset$
 - (U, \leq_i) is an atomic join semi-lattice
 - (M, ≤_m) is a non-atomic (and dense) join semi-lattice
 - V is a value assignment function

Vendler's Aspectual Verb Classes

Model Structure with Sub-Events

- In analogy to plural semantics, we can represent sub-event relations by a join semi-lattice.
- $\blacksquare M = \langle U, \langle E, \leq_e \rangle, <, e_u, V \rangle, where$
 - U ∩ E = \emptyset ,
 - $< \subseteq E \times E$ is a partial ordering relation (temporal precedence)
 - $e_u \in E$ is the utterance event
 - $\langle E, \leq_e \rangle$ is a join semi-lattice
 - V is an interpretation function

Model Structure with Sub-Events

- $M = \langle U, \langle E, \leq_e \rangle$, <, $e_u, V \rangle$, where
 - $U \cap E = \emptyset$,
 - $< \subseteq E \times E$ is a partial ordering relation (temporal precedence)
 - $e_u \in E$ is the utterance event
 - $\langle E, \leq_e \rangle$ is a join semi-lattice
 - V is an interpretation function
- The model structure must observe some additional constraints on < and ≤_e, e.g.:
 - If $e_1 < e_2$ and $e_1' \leq_e e_1$ and $e_2' \leq_e e_2$, then $e_1' < e_2'$
 - If $e_1' \circ e_2'$ and $e_1' \leq_e e_1$ and $e_2' \leq_e e_2$, then $e_1 \circ e_2$

Model Structure with Sub-Events

Application: Complex events are represented as sequences of temporally ordered sub-events

 for instance "scripts" like: visit a restaurant or shopping in the supermarket

Processes and Mass Terms

- Process-describing verbs are similar to mass terms. Both are
 - Cumulative:

 $gold(x), gold(y) \models gold(x \oplus_m y)$

```
rain(e_1), rain(e_2) \vDash rain(e_1 \oplus_e e_2)
```

```
Divisive:
```

```
gold(x), y \triangleleft_m x, \models gold(y)
rain(e<sub>1</sub>), e<sub>2</sub> \triangleleft_e e<sub>1</sub>, \models rain(e<sub>2</sub>)
```

Processes and Mass Terms

In analogy to the semantics of mass terms, assume

- a domain of processes ("event matter") in addition to the domain of individual events, represented through a nonatomic join semi-lattice
- a "materialisation function" for events that maps individual events to processes

 $M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, h, \langle E_i, \leq_{ei} \rangle, (E_m, \leq_{em}), h_e, <, e_u, V \rangle$

■ Add two-place relations Add two-place relations </pr

Progressive Form

(1) John is eating an apple

The core of the interpretation of progressive form is the materialization function h_e, which maps individual events – the telic action of John's eating an apple – to the process or activity that leads to the result.

(Very Preliminary) Interpretation of the Progressive Form

(1) John is eating an apple

Progressive operator:

- PROG := $\lambda E \lambda e' \exists e[E(e) \land e' = m_e(e)]$
- $\lambda E \lambda e' \exists e[E(e) \land e' = m_e(e)](\lambda e'' \exists x[apple(x) \land eat(e'',j*,x)])$
- $\Leftrightarrow_{\beta} \lambda e' \exists e[\exists x[apple(x) \land eat(e,j^*,x)] \land e'=m_e(e)]$

Present progressive:

- PRES := $\lambda E \exists e''[E(e'') \land e'' \circ e_u]$
- λE ∃e''[E(e'') ∧ e''∘e_u]

 $(\lambda e' \exists e[\exists x[apple(x) \land eat(e,j^*,x)] \land e'=m_e(e)])$

■ $\Leftrightarrow_{\beta} \exists e''[\exists e \exists x[apple(x) \land eat(e,j^*,x)] \land e''=m_e(e) \land e'' \circ e_u]$

Semantic Roles: An Example

(1) The window broke

(2) A rock broke the window

(3) John broke the window with a rock

(1) [John]_{ag} broke [the window]_{pat} [with a rock]_{inst}
 (2) [A rock]_{inst} broke [the window]_{pat}

(3) [The window]_{pat} broke

A Variant of Davidson's Problem?

How do we model entailment?

 $break_3(j, w, r) \models break_2(r, w) \models break_1(w)$

This reminds of Davidson's problem:

kill₄(g, b, m, p) ⇒kill₃(g, b, p) ⇒ kill₂(g, b)

- A solution along the lines of Davidson's event semantics:
 - Introduce an event argument
 - Represent roles as binary relations between events and participants

"Neo-Devidsonian" Event Semantics

- Assume an implicit event argument for event verbs (we need it anyway).
- Represent roles as binary relations between events and participants:
 - (1) $\exists e [break(e) \land pat(e, w)]$
 - (2) $\exists e [break(e) \land pat(e, w) \land inst (e, r)]$
 - (3) $\exists e [break(e) \land ag(e, j) \land pat(e, w) \land inst (e, r)]$

Differences

Event modifiers are

- syntactically realize by free adjuncts
- freely applicable to all event verbs, and
- can be iteratively applied to event predicates in arbitrary number
- Semantic roles are
 - syntactically realized by complements,
 - which can occur with a verb only in accordance with verbspecific subcategorization constraints

Differences

- Adjuncts expressing event modifiers are semantically transparent (modulo ambiguity): the adjunct *at midnight* expresses a temporal modifier, *in the park* a location.
- Syntactic complements realize different semantic roles, and one role can be realized by different complement types. The relation between roles and their syntactic realizations ("role-linking relation") is verb-specific.
- Adjuncts express "external" properties of events.
- Semantic roles refer to intrinsic parts of the event structure.

What are Semantic Roles?

- Understanding a verb (or any other predicate) means to know the situation type or **conceptual schema** (the "**frame**") associated with or evoked by it.
- Part of the situation type or conceptual schema are typical **participants**: persons or objects that play a specific **role** in the conceptual schema expressed by the predicate.

How many Roles?

- According to Fillmore (1968), roles are universal: they form a small, closed inventory.
 - A typical role inventory: Agent, Theme (Patient, Object), Recipient, Instrument, Source, Goal, Beneficiary, Experiencer.
- [Mary]_{Ag} gave [a book]_{Pat} [to John]_{Rec}
- [John]_{Rec} received [a book]_{Pat} [from Mary]_{Ag}
- But: [Mary]_{???} sold [a car]_{???} [to John]_{???} [for 3,000 €]_{???}

How many Roles?

Specific role inventories for each lemma:

roles of kick: arg0_{kick}, arg1_{kick} or "kicker", "kicked"

- This is the **PropBank** solution.
- Problem: Cross-lexical relations (and entailments) cannot be modelled:
 - give : receive
 - buy : sell
 - like : please

How many Roles?

- Specific role inventories for different frames: Event or situation schemata that are "evoked" by content words, typically verbs (also called frame-evoking elements or target words).
- Semantic roles are neither universal nor lemma-specific: There are typically several target words for a frame. Roles apply across the target words of a frame.
- This is the FrameNet variant of role semantics.
- Example: The "Commercial Transaction" frame is evoked by sell, buy, vend, auction, purchase, sale, … and has frame-specific roles ("frame elements") Seller, Buyer, Goods, Money.

Roles in Compositional Semantics

- How do we get from a surface sentence to its rolesemantic representation?
- Two sub-tasks:
 - Role Linking: How can syntactic relations between verb and arguments be mapped to semantic roles?
 - Semantic Construction: How can we integrate role information in type theory?

Role Linking

- Part of the linking process is regular. For instance:
 - An overt agent always becomes subject.
 - If there is no overt agent, the instrument becomes subject.
 - If no agent or instrument occurs, the theme becomes subject.
- Linguistic grammar theories try to describe role linking systematically, as part of the grammar, working, e.g., with "obliqueness hierarchies".
- Problem: Role linking has idiosyncratic aspects.
- As a consequence: Linking information should be (to some part) provided by the lexicon.
- (Statistical role labelers typically exploit grammatical as well as lexical regularities.)

Semantic Composition (just for illustration!)

Order-free lambda abstraction

- kick $\Rightarrow \lambda$ {x, y, e}.kick'[ref:e, ag:x, pat:y]
- kick Bill $\Rightarrow \lambda$ {x, y, e}.kick'[ref:e, ag:x, pat:y](bill'_{pat})

 $\Leftrightarrow \lambda\{x, e\}.kick'[ref:e, ag:x, pat:bill']$

■ Mary kicked Bill $\Rightarrow \lambda$ {x, e}.kick'[ref:e, ag:x, pat:bill'](mary'_{aq})

 $\Leftrightarrow \lambda$ {e}.kick'[ref:e, ag:mary', pat:bill']