Semantic Theory
 Lecture 12: Events and Processes; Semantic Roles

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Final Exam

Thursday, July 24
10:00 -
Seminar Room

Event Semantics

- A model structure with events and temporal precedence is defined as $\mathbf{M}=\left\langle\mathbf{U}, \mathbf{E},<, \mathbf{e}_{u}, \mathbf{V}\right\rangle$, where
- U $\cap \mathrm{E}=\varnothing$,
- < $\subseteq E \times E$ is a partial ordering relation (temporal precedence)
- $\mathrm{e}_{\mathrm{u}} \in \mathrm{E}$ is the utterance event
- V is an interpretation function like in standard FOL, with $\mathrm{D}_{\mathrm{e}}=\mathrm{U} \cup \mathrm{E}$.

Model structures for plural terms

- A model structure is a pair $\mathbf{M}=\langle\langle\mathbf{U}, \leq\rangle, \mathbf{V}\rangle$, where
- $\langle\mathrm{U}, \leq\rangle$ is an atomic join semi-lattice with universe U and individual part relation \leq.
- V is a value assignment function.
- $A \subseteq U$ is the set of atoms in $\langle U, \leq\rangle$.
- $\mathrm{U} \backslash \mathrm{A}$ is the set of non-atomic elements, i.e., the proper sums or groups in U.

Model Structure for Mass Terms

- We add another sort of entities, the "portions of matter" M , to the model structure, and distinguish an individual part and a material part relation, writing \leq_{i} for the former, and \leq_{m} for the latter:
- $\mathbf{M}=\left\langle\left\langle\mathbf{U}, \leq_{i}\right\rangle,\left\langle M, \leq_{m}\right\rangle, h, V\right\rangle$
- $U \cap M=\varnothing$
- $\left\langle\mathrm{U}, \mathbf{s}_{\mathrm{i}}\right\rangle$ is an atomic join semi-lattice
- $\left\langle\mathbf{M}, \leq_{m}\right\rangle$ is a non-atomic (and dense) join semi-lattice
- V is a value assignment function

Vendler's Aspectual Verb Classes

Model Structure with Sub-Events

- In analogy to plural semantics, we can represent sub-event relations by a join semi-lattice.
- $M=\left\langle U,\left\langle E, \leq_{e}\right\rangle,<, e_{u}, V\right\rangle$, where
- $\mathrm{U} \cap \mathrm{E}=\varnothing$,
- < $\subseteq E \times E$ is a partial ordering relation (temporal precedence)
- $e_{u} \in E$ is the utterance event
- $\left\langle E, \leq_{e}\right\rangle$ is a join semi-lattice
- V is an interpretation function

Model Structure with Sub-Events

- $M=\left\langle U,\left\langle E, \leq_{e}\right\rangle,<, e_{u}, V\right\rangle$, where
- $\mathrm{U} \cap \mathrm{E}=\varnothing$,
- $<\subseteq E \times E$ is a partial ordering relation (temporal precedence)
- $\mathrm{e}_{\mathrm{u}} \in E$ is the utterance event
- $\left\langle E, \leq_{e}\right\rangle$ is a join semi-lattice
- V is an interpretation function
- The model structure must observe some additional constraints on $<$ and \leq_{e}, e.g.:
- If $\mathrm{e}_{1}<\mathrm{e}_{2}$ and $\mathrm{e}_{1}{ }^{\prime} \leq_{e} \mathrm{e}_{1}$ and $\mathrm{e}_{2}{ }^{\prime} \leq_{e} \mathrm{e}_{2}$, then $\mathrm{e}_{1}{ }^{\prime}<\mathrm{e}_{2}{ }^{\prime}$
- If $e_{1}^{\prime} \circ e_{2}^{\prime}$ and $e_{1}^{\prime} \leq_{e} e_{1}$ and $e_{2}^{\prime} \leq_{e} e_{2}$, then $\mathrm{e}_{1} \circ \mathrm{e}_{2}$

Model Structure with Sub-Events

- Application: Complex events are represented as sequences of temporally ordered sub-events
- for instance "scripts" like: visit a restaurant or shopping in the supermarket

Processes and Mass Terms

- Process-describing verbs are similar to mass terms. Both are
- Cumulative:

```
gold(x), gold(y) \modelsgold(x@my)
rain(e), rain(e)
```

- Divisive:

```
gold(x), y }\mp@subsup{\triangleleft}{\textrm{m}}{\textrm{x}}\textrm{x},\vDash\operatorname{gold}(\textrm{y}
```


Processes and Mass Terms

- In analogy to the semantics of mass terms, assume
- a domain of processes ("event matter") in addition to the domain of individual events, represented through a nonatomic join semi-lattice
- a "materialisation function" for events that maps individual events to processes

$$
M=\left\langle\left\langle U, \leq_{i}\right\rangle,\left\langle M, \leq_{m}\right\rangle, h,\left\langle E_{i}, \leq_{e i}\right\rangle,\left\langle E_{m}, \leq_{e m}\right\rangle, h_{e},<, e_{u}, V\right\rangle
$$

- Add two-place relations $\triangleleft_{\mathrm{ei}}, \triangleleft_{\mathrm{em}}$, and operators $\oplus_{\mathrm{ei}}, \oplus_{\mathrm{em}}$, and a function expression m_{e} to the representation language, and give them a straightforward semantic interpretation in terms of $\leq_{\text {ei, }} \leq_{\text {em, }}$, பei, பem, $\mathbf{h e}_{\mathbf{e}}$.

Progressive Form

(1)John is eating an apple

- The core of the interpretation of progressive form is the materialization function h_{e}, which maps individual events the telic action of John's eating an apple - to the process or activity that leads to the result.

(Very Preliminary) Interpretation of the Progressive Form

(1)John is eating an apple

- Progressive operator:
- PROG := $\lambda E \lambda e^{\prime} \exists e\left[E(e) \wedge e^{\prime}=m_{e}(e)\right]$
- $\lambda E \lambda e^{\prime} \exists e\left[E(e) \wedge e^{\prime}=m_{e}(e)\right]\left(\lambda e^{\prime \prime} \exists x\left[a p p l e(x) \wedge\right.\right.$ eat $\left.\left.\left(e^{\prime \prime}, j{ }^{*}, x\right)\right]\right)$
- $\Theta_{\beta} \lambda e^{\prime} \exists e\left[\exists x\left[a p p l e(x) \wedge\right.\right.$ eat $\left.\left.\left(e, j^{*}, x\right)\right] \wedge e^{\prime}=m_{e}(e)\right]$
- Present progressive:
- PRES := $\lambda E \exists e^{\prime \prime}\left[E\left(e^{\prime \prime}\right) \wedge e^{\prime \prime}{ }^{\circ} e_{u}\right]$
- $\lambda E \exists e^{\prime \prime}\left[E\left(e^{\prime \prime}\right) \wedge e^{\prime \prime}{ }^{\circ} e_{u}\right]$
($\lambda e^{\prime} \exists \mathrm{\exists e}\left[\exists x\left[a p p l e(x) \wedge\right.\right.$ eat($\left.\left.\left.\left.(,)^{*}, x\right)\right] \wedge e^{\prime}=m_{e}(e)\right]\right)$
- $\Leftrightarrow_{\beta} \exists e^{\prime \prime}\left[\exists e \exists x\left[a p p l e(x) \wedge\right.\right.$ eat($\left.\left.\left(, j^{*}, x\right)\right] \wedge e^{\prime \prime}=m_{e}(e) \wedge e^{\prime \prime}{ }^{\circ} e_{u}\right]$

Semantic Roles: An Example

(1) The window broke
(2) A rock broke the window
(3) John broke the window with a rock
(1) $[J o h n]_{\text {ag }}$ broke [the window $]_{\text {pat }}[\text { with a rock }]_{\text {inst }}$
(2) $[A \text { rock }]_{\text {inst }}$ broke [the window $]_{p a t}$
(3) $[\text { The window }]_{p a t}$ broke

A Variant of Davidson's Problem?

- How do we model entailment?

$$
\operatorname{break}_{3}(\mathbf{j}, \mathbf{w}, \mathbf{r}) \models \operatorname{break}_{2}(\mathbf{r}, \mathbf{w}) \models \operatorname{break}_{1}(\mathbf{w})
$$

- This reminds of Davidson's problem:

$$
\operatorname{kill}_{4}(g, b, m, p) \Rightarrow \operatorname{kill}_{3}(g, b, p) \Rightarrow \operatorname{kill}_{2}(g, b)
$$

- A solution along the lines of Davidson's event semantics:
- Introduce an event argument
- Represent roles as binary relations between events and participants

„Neo-Devidsonian" Event Semantics

- Assume an implicit event argument for event verbs (we need it anyway).
- Represent roles as binary relations between events and participants:
(1) $\exists \mathrm{e}$ [break(e) \wedge pat(e, w)]
(2) $\exists \mathrm{e}[\operatorname{break}(\mathrm{e}) \wedge \operatorname{pat}(\mathrm{e}, \mathrm{w}) \wedge$ inst $(\mathrm{e}, \mathrm{r})]$
(3) $\exists \mathrm{e}[\operatorname{break}(\mathrm{e}) \wedge \mathrm{ag}(\mathrm{e}, \mathrm{j}) \wedge \operatorname{pat}(\mathrm{e}, \mathrm{w}) \wedge$ inst $(\mathrm{e}, \mathrm{r})]$

Differences

■ Event modifiers are

- syntactically realize by free adjuncts
- freely applicable to all event verbs, and
- can be iteratively applied to event predicates in arbitrary number
- Semantic roles are
- syntactically realized by complements,
- which can occur with a verb only in accordance with verbspecific subcategorization constraints

Differences

- Adjuncts expressing event modifiers are semantically transparent (modulo ambiguity): the adjunct at midnight expresses a temporal modifier, in the park a location.
- Syntactic complements realize different semantic roles, and one role can be realized by different complement types. The relation between roles and their syntactic realizations ("role-linking relation") is verb-specific.
- Adjuncts express "external" properties of events.
- Semantic roles refer to intrinsic parts of the event structure.

What are Semantic Roles?

■ Understanding a verb (or any other predicate) means to know the situation type or conceptual schema (the "frame") associated with or evoked by it.

- Part of the situation type or conceptual schema are typical participants: persons or objects that play a specific role in the conceptual schema expressed by the predicate.

How many Roles?

- According to Fillmore (1968), roles are universal: they form a small, closed inventory.
- A typical role inventory: Agent, Theme (Patient, Object),Recipient, Instrument, Source, Goal, Beneficiary, Experiencer.
- $\quad[\text { Mary }]_{A g}$ gave [a book] $]_{\text {Pat }}[\text { to John }]_{\text {Rec }}$
- [John] $]_{\text {Rec }}$ received [a book] Pat $[f r o m \text { Mary }]_{A g}$
- But: [Mary $]_{\text {??? }}$ sold [a car] ??? $[t o ~ J o h n]_{\text {?? }}[f o r ~ 3,000 ~ €]_{\text {??? }}$

How many Roles?

- Specific role inventories for each lemma:
roles of kick: $\arg _{\text {kick }}, \arg _{\text {kick }}$ or „kicker", „kicked"
- This is the PropBank solution.

■ Problem: Cross-lexical relations (and entailments) cannot be modelled:

give : receive
buy : sell
like : please

How many Roles?

- Specific role inventories for different frames: Event or situation schemata that are „evoked" by content words, typically verbs (also called frame-evoking elements or target words).
- Semantic roles are neither universal nor lemma-specific: There are typically several target words for a frame. Roles apply across the target words of a frame.
- This is the FrameNet variant of role semantics.
- Example: The "Commercial Transaction" frame is evoked by sell, buy, vend, auction, purchase, sale, ... and has frame-specific roles ("frame elements") Seller, Buyer, Goods, Money.

Roles in Compositional Semantics

- How do we get from a surface sentence to its rolesemantic representation?
- Two sub-tasks:
- Role Linking: How can syntactic relations between verb and arguments be mapped to semantic roles?
- Semantic Construction: How can we integrate role information in type theory?

Role Linking

- Part of the linking process is regular. For instance:
- An overt agent always becomes subject.
- If there is no overt agent, the instrument becomes subject.
- If no agent or instrument occurs, the theme becomes subject.
- Linguistic grammar theories try to describe role linking systematically, as part of the grammar, working, e.g., with "obliqueness hierarchies".
- Problem: Role linking has idiosyncratic aspects.
- As a consequence: Linking information should be (to some part) provided by the lexicon.
- (Statistical role labelers typically exploit grammatical as well as lexical regularities.)

Semantic Composition (just for illustration!)

■ Order-free lambda abstraction

■ kick $\Rightarrow \lambda\{\mathrm{x}, \mathrm{y}, \mathrm{e}\} . k i \mathrm{c}^{\prime}$ '[ref:e, ag:x, pat:y]
■ kick Bill $\Rightarrow \lambda\{x, y, e\} . k i c k '[r e f: e, ~ a g: x, ~ p a t: y]\left(b i l l '{ }_{p a t}\right)$
$\Leftrightarrow \lambda\{x, e\} . k i c k '[r e f: e, ~ a g: x, p a t: b i l l ']$

- Mary kicked Bill $\Rightarrow \lambda\{x, e\} . k i c k '[r e f: e, ~ a g: x, ~ p a t: b i l l ’]\left(m a r y '{ }_{a g}\right)$
$\Leftrightarrow \lambda\{e\} . k i c k '[r e f: e, ~ a g: m a r y ', ~ p a t: b i l l '] ~$

